1 Report Model Documentation and Examples

Dean Holzworth (CSIRO, Australia) and Val Snow (AgResearch, New Zealand)

(Text last updated 24 October 2019)

Report is the model in APSIM that is used to generate columns of simulation outputs for further analysis.

The simulations in this example are to show examples of the different reporting capabilities and to provide a test that they
continue to produce the correct results.

The intention is that this documentation is read alongside the simulation that produced it to see the detail of the examples.
The simulation is to be found under the "Examples" button as Report.apsim.

2 Reporting Basics

Setting up outputs from a simulation requires describing what to output and when that should be done.

2.1 Properties - setting up what should be reported

Figure 1 shows a screen capture of a simple report. The upper box (Properties) holds descriptions of what should be
reported. The general syntax is:

[Model] .Variable

The first part, "[Model]" just above, gives the name of a model in the simulation. Models are almost any component in the
simulation - e.g. Clock, Weather, Wheat, Irrigation - including Manager scripts (although these are a slightly special case
and more on that below). The name of the model must be in square brackets. As with Manager scripts, Properties uses
Intellisense to assist with constructing the output descriptors. For example, see row 1 of Figure 1. After typing "[Clock]"
once a "." is typed a drop-down list of possible variables will appear as hints and in Figure 1 the choice from the list was

"Today" which gives the date of the simulation output.
Note that model and variable names are case-sensitive. Capitalisation in the right places is important.
The component "ReportSimple" shows four output examples (see also below). The second row (see also below) shows

an example of relabelling the output (the "as DairyRainfall" text) - this simply allows the user to give a more relevant label
for the output in the output file.

[Weather].Rain as DailyRainfall

The third row shows that it may be necessary to work through several layers to get to the output wanted. In each case a

." after the variable name gives a list with hints for outputs.
[Wheat] .Grain.Total.Wt

The fourth row (also below) shows the special case of reporting an output from a Manager script. The first part ("
[SowingRule]") is the name of the Manager script (so the output text needs to say current with any name changes you
might make). Outputs from Managers always need a ".Script" before Intellisense will show the possible outputs.

[SowingRule] .Script.SowingDepth

2.2 Reporting frequency - setting up when reports should happen

Also needed is a specification of when an output should be made. The instruction for when to report is in the form of:

[Model] .Event or Date(s)

2.3 Event

An Event is something that happens, like a stage of the day or a management action. The most-used example of a
reporting frequency is:

[Clock] .EndOfDay

and this creates an output for every "EndOfDay" event - "EndOfDay" is an event created by Clock every day after all the
models have done their calculations. Any (almost) event can be used to control the frequency of reporting such as:

Wheat] .Sowing
Wheat] .Flowering
Wheat] .Harvesting

Irrigation].Irrigated

[

[

[

[Wheat] .PlantEnding

[

[Fertiliser] .Fertilised

where “Wheat” might be any crop. This also shows that multiple triggers for reporting can be used.

It is worth noting that when an event is used to trigger reporting, the output happens immediately rather than at the end of
the simulation day. If you are getting strange outputs then consider this as a possible reason. To understand more about

what order models do their calculations see https://apsimnextgeneration.netlify.com/development.

2.4 Dates

In addition to specifying events, you can also specify one or more dates in the frequency window. Dates can be specified

one per line at be in either dd-mmm or dd-mmm-yyyy form e.g.

1-jul
1-jul-1980

Note that there can be a mixture of events and dates.

2.5 Reporting at irregular intervals or specific dates

If reporting is needed for particular days (e.g. to compare against measurements in an experiment) a combination of a
Manager and a Report component will do the trick. An example of such a Manager (ReportHelper) and two Report
components (ReportOnSpecificDaysEveryYear and ReportOnSpecificDates) are included in this example. Note that
when using a Manager to control reporting, the Report frequency in the Report component should be left blank.

[Note that an Operations component could also be used to trigger irregular reporting dates.]

3 Dealing with outputs that have layers

Several of the outputs from APSIM are arrays - water content in the soil layers is a good example of this - and there are
some features that make reporting arrays easier in APSIM.

To report all elements of an array, the syntax is the same as reporting a single variable. See for example in Row 2 of
"ReportArrays the text

[Soil] .SoilWater.SWmm

produces one column of output for each element (soil layer) in the array. When a particular layer is wanted then specify
that in square brackets so the "[1]" is the top (closest to the soil surface) layer. For example,

[Soil] .SoilWater.SWmm([1l] as TopLayerWater mm

More often some sort of aggregation is in the array is wanted and for this it is necessary to specify both which elements of
the array are to be aggregated and what type of aggregation is wanted.

There are four options for specifying how the array elements should be aggregated - Sum, Mean, Min and Max - the
meaning of these is self-evident. These are applied to the array as, for example Mean(x) where the x is the output to be
averaged. Use round brackets, capitalise the aggregation type and no spaces.

For specifying how the aggregation is to work there are several options. Giving no layer information at all includes all of
the array. A range is specified as, for example [3:6] for the third to sixth (inclusive, here meaning four layers) layers.
Giving the colon but no numerical value means from the first (e.g. [:5]) or to the last (e.g. [2:]) elements. Report will not
indicate the depth of the layers but the user can either get this information from the Soil input or can output the data using
[Soil].Thickness which is an array giving the thickness of each layer in mm.

Some examples of possible array outputs to show the syntax are:

Sum([Soil] .Thickness[1:3]) as DepthToBottomOfLayer3
Sum([Soil].SoilWater.SWmm) as TotalWaterStored
Sum([Soil].SoilWater.SWmm([1:2]) as WaterStoredTop2Layers
Sum([Soil] .SoilWater.SWmm[1l:3]) as WaterStoredTop3Layers
Sum([Soil].SoilWater.SWmm[4:]) as WaterStoredLayer4AndBelow
Sum([Soil].SoilWater.SWmm[:6]) as WaterStoredDowntoLayer6
Mean ([Soil] .Nutrient.NO3.ppm[1l:4]) as MeanNO3ppmTop4Layers
Min([Soil] .Nutrient.NO3.ppm[1l:4]) as MinNO3ppmTop4d4Layers
Max ([Soil] .Nutrient.NO3.ppm[1l:4]) as MaxNO3ppmTop4Layers

Simple, element-by-element, array operations can be included in the specification. For example

[Soil] .Nutrient.Urea.kgha + [Soil].Nutrient.NH4.kgha +
[Soil] .Nutrient.NO3.kgha

will produce one column of data for each soil layer with the total of the amount of N as Urea, NH4 and NO3. Inserting

Sum([Soil] .Nutrient.Urea.kgha[1l:3] + [Soil].Nutrient.NH4.kgha[l:3] +
[Soil] .Nutrient.NO3.kgha[l:3]) as MineralN

will give a single column of data with the total of Urea-N, NH4-N and NO3-N dfrom the surface the the bottom of the third
layer. These expressions can get more complex as in:

Sum([Soil] .Nutrient.Urea.kgha[1l:3] + [Soil].Nutrient.NH4.kgha[l:3] +
[Soil] .Nutrient.NO3.kgha[1:3]) * 1000 / Sum([Soil].Thickness[1:3]) as
KgMinN PerSoilMeter

which would give s single (somewhat nonsensical) output of the accumulation in mineral N with depth in the soil.

4 Reporting at Intervals Beyond Every Day

Note well — reporting at aggregations other than every day can become complex. It is recommended that the results be
critically evaluated to ensure that the reporting specified is as intended.

APSIM allows reporting at various intervals. Several of these methods have been described above. In addition to the
usual [Clock].EndOfDay for daily reporting, [Clock] also has events of EndOfWeek, EndOfMonth, EndOfYear and
EndOfSimulation. When the reporting is not every day then it is necessary to consider what the aggregation of the output
should be. Some variables would usually be reported as their value on the day — many state variables (e.g. plant
biomass) are like this. Others are almost always wanted to be summed over the interval since the last report — drainage
and evaporation are good examples here.

APSIM provides several ways to construct the aggregations. Not all the aggregations will be sensible for all outputs and it
is up to the user to ensure the sensibility of the instructions to Report. For example, it makes no physical sense to sum
the biomass of a plant in a monthly aggregation. It would make sense to report the value at the end of the month or to

report the increase (difference) in biomass from the start to the end and it might make sense to report an average
biomass. These issues must be considered when constructing more complex Report specifications. The general syntax of
aggregated reporting is:

AggregationType of [Model].Variable from Start to End as Label

The new elements here are AggregationType, Start and End.
##AggregationType AggregationType can be any of:

- Sum of
- Mean of
- Min of

- Max of
- First of
- Last of
- Diff of

Most of these are self-evident. First and Last are chronological values. Diff is the increase in the output variable over the
reporting interval — if the variable decreases then it will have a negative value.

##Start The most useful form of Start is [ReportName].Date OfLastOutput where the first part is the name of the current
Report component. DateOfLastOutput is pretty much as stated. Other Start constructs might be a general, e.g. 7-jan, or
specific, e.g. 1-jan-1982, date. Start can also be an event, e.g. [Wheat].sowing or [Clock].StartOfYear. When Start is a
Clock or Report event the aggregation always starts at the start of the day. For events created by crop or other models
the event can happen at any point of the day and it is not always clear without careful examination if the current-day
calculations and updates will be included or excluded. This is user-beware.

##End [Clock]. Today is the most useful End specification. This means that the end of the aggregation will be controlled by
the Report frequency. End can also be an event, e.g. [Wheat].Harvesting or a general or specific date. As with Start and
events, treat these with caution. Always consider the interaction between the aggregation interval and the report
frequency. For example if the report frequency is [Clock].EndOfMonth:

Sum of [Weather].Rain from [Report].DateOfLastOutput to [Clock].Today

will produce a monthly rainfall total while

Sum of [Weather].Rain from 1-jan to [Clock].Today

will produce a cumulative rainfall as the months of the year progress and the accumulation will reset again on the next 1-
Jan.

##Some examples The figures below show some aggregation examples of daily, weekly, monthly and annual aggregation
reporting maximum temperature in various ways. Note that an aggregation to the end of the simulation is also possible.
See the accompanying example Report.apsimx for details of these aggregations.

Maximum Temperatures with Varying Aggregation Minimum Temperatures with Varying Aggregation

30 — 10 —
o 1
30 - 30 <
20 20 —
10 H 10 <
| | | |
1984 1989 1984 1989

5 More Reporting Examples

5.1 Perennial Crop Example

The simulation in this section (titled "Annual Reporting In June") is a multi-year pasture cutting trial simulation. The Report
components provide some examples of ways to get useful outputs from a simulation. See the generated documentation
but also look at the output specifications in the Reports components.

Note that in the documentation, many of the output specifications are broken over two or more lines. This is only to show
then text in the generated PDF. In a Report component, all the text would be on a single line.

5.1.1 Getting Annual Patterns of Herbage Accumulation

When working with perennial crops that are harvested or grazed frequently, often an output that plots the accumulation of
growth during a year is wanted. That output should be zeroed between years. If simulating a site in the Southern
Hemisphere, usually the end of the year will be in June or July (winter). Here this is achieved as
"CumulativeAnnualNetGrowth" using reporting at the end of the month (see in MonthlyReporting) and:

Sum of ([Ryegrass].NetGrowthWt + [WhiteClover].NetGrowthWt)
from 1-Jul to [Clock].Today as CumulativeAnnualNetGrowth

with the output shown as the orange line below. Note that here it is necessary to calculate the output summing ryegrass
and white clover. For comparison, the pattern of accumulation is plotted against the annual total (green line) and that was
specified in AnnualReporting using:

Sum of ([Ryegrass].NetGrowthWt + [WhiteClover].NetGrowthWt)
from [AnnualReporting].DayAfterLastOutput to [Clock].Today
as SumYearlyNetGrowth

Annual Accumulation of Pasture Growth Reported in June

15000 — -

10000 —

5000 —

0 T T T T
1982 1984 1986 1988

5.1.2 Working with Soil Carbon

When working with soil carbon (or organic nitrogen), gradual changes can hide systematic changes because the totals
are so large and while the changes are small, they become important. In this example, using annual reporting only, there
are three examples of reporting soil carbon.

The green line is the total soil carbon and is the most basic output. The specification is:
Sum([Soil].SoilNitrogen.TotalC) /1000 as SoilCarbonToday tonnesPerHa

where the "/1000" converts the standard output from kg /ha to tonnes /ha. The output is plotted against the right-hand axis

and shows little change.

The orange line is the annual change in soil carbon (plotted against the left-hand axis) was created using:

Diff of Sum([Soil].SoilNitrogen.TotalC) from [Clock].StartOfSimulation
to [Clock].Today as ChangeInSoilCarbon

This clearly shows that soil carbon is increasing most years but that the increase is diminishing towards the end of the
simulation. Note that for this simulation the line could also have been created using:

Diff of Sum([Soil].SoilNitrogen.TotalC)
from 01-jul-1980 to [Clock].Today as ChangeInSoilCarbon

but the first version is more generic in that if the start date of the simulation is changed it will still be valid. The second
version can be more useful where there is an initial spin-up period of several years before changes in soil carbon are of
interest. Another form of soil carbon output that can be useful is the change within any year. That (the blue line) shows
even more clearly the slow stabilisation of the total carbon and is specified using:

Diff of Sum([Soil].SoilNitrogen.TotalC)
from 01-jul to [Clock].Today as AnnualChangeInSoilCarbon

Change In Soil Carbon

— 1000

— 500

5.1.3 Daily and Monthly Leaching
The example below shows daily, monthly, and cumulative annual leaching. The daily output is from "DailyReporting" and

is simply:
[Soil] .SoilWater.LeachNO3

The other two outputs are both calculated in "MonthlyReporting" as
[MonthlyReporting] .DayAfterLastOutput

Sum of [Soil].SoilWater.LeachNO3 from
to [Clock].Today as SumLeaching kgPerHa
and
Sum of [Soil].SoilWater.LeachNO3
from 1-Jan to [Clock].Today as CumLeaching kgPerHa
Daily and Monthly Leaching
4
*
4
»
+
| '
- 1 ‘
{ :‘ ‘ »
| ..‘ ‘“ ‘
f ’ J
| | '
50 — t /! ' [|t \
I 1‘ T“. * ?. ‘
J ¢
1 | b ad T | ‘ +
PN
'T " ’ [|1 '
M +
s J‘ |
‘ P l ‘ .
s CAT T s U0 ‘ 7~ |
1 | ‘ I] #
L;: }l " 1 4 9o
0 o - b -t
T T T T
) 1984 1986 1988

5.2 Annual Crop Example
In annual cropping simulations, users often want to know the values of outputs only during the period that the crop is in
the ground with the outputs summarised over the interval between sowing and harvesting. The examples in this section
show how to do this and also show some results that might be unexpected to look out for.
Note this example also shows and example of specifying dates in the report frequency e.g.
1-jan
1-feb
l-mar
2-jan-1980
See ReportSpecificDates report model.
5.2.1 Comparing Rainfall during the Crop and All Year
The example below shows, for each calendar year, the amount of rain that fell when the crop was in the ground as

compared to the annual rainfall. The Report frequency in "ReportiInCropAnnually” is {Clock].EndOfYear and the output
specifications are:

Sum of [Weather].Rain from [Wheat].Sowing
to [Wheat] .Harvesting as InCropRainfall

Sum of [Weather].Rain from 1-Jan to
[Clock] .Today as AllYearRainfall

Rainfall during Crop and All Year

1000 —

800

600 —

400 -

200

5.2.2 Soil Water storage during the Cropping Phase

The next example also uses outputs from "ReportinCropAnnually" and shows how to get information about soil conditions
during the crop. The output specification:

Mean of Sum([Soil].SoilWater.SWmm) from [Wheat].Sowing
to [Wheat] .Harvesting as InCropMeanSoilWater

gives the whole-soil profile soil water storage as a mean while the crop is in the ground. The output is reported at the end
of the year but is for the period from sowing to harvesting only. If the interest is only in the water storage in the top three
layers then the specification would be:

Mean of Sum([Soil].SoilWater.SWmm[:3]) from [Wheat].Sowing
to [Wheat].Harvesting as InCropMeanSoilWaterTopThreelayers

and that produces the black line in the figure below. If the interest was in the water storage during the vegetative stages
compared to the reproductive stages then:

Mean of Sum([Soil].SoilWater.SWmm[:3]) from [Wheat].Sowing
to [Wheat].Flowering as VegetativeMeanSoilWaterTopThreelayers

and

Mean of Sum([Soil].SoilWater.SWmm[:3]) from [Wheat].Flowering
to [Wheat] .Harvesting as ReproductiveMeanSoilWaterTopThreelayers

produce the green and red lines to show that there was less water storage during the reproductive stages. Of course
other types of aggregation could be reported such as the difference durign the phases, min/max etc.

Soil water stroage

600 -

400 —

200

5.2.3 Reporting Yield and When Things Can Seem to Go Wrong

The Report model is a powerful and very useful component to get the information needed from the simulation - but there
are some traps that should be noted.

The example below is primarily based on "ReportiInCropAnnually" which has a reporting frequency of [Clock].EndOfYear.
That Report uses an output specification of:

Max of ([Wheat].Grain.Wt * 10000 / 1000) from [Wheat].Sowing
to [Wheat].Harvesting as FinalYield kg Ha
// * 10000 / 1000 to convert from g/m2 to kg/ha

(note that the double slash, //, denotes a comment which is shown in green in the user interface). This produces the
green line in the figure below. It is immediately noticeable that the yeild in late 1984 was exactly the same as the previous
year - this should raise red flags. Alternative outputs that might be expected to give the same values are:

Max of ([Wheat].Grain.Wt * 10000 / 1000)
from [ReportInCropAnnually].DayAfterLastOutput
to [Wheat] .Harvesting as FinalYield kg Ha vl

also at a reporting frequency of [Clock].EndOfYear (the black line), or

([Wheat] .Grain.Wt * 10000 / 1000) as HarvestedYield kg Ha

with a reporting frequency of [Wheat].Harvesting which produced the orange line (see ReportGrainOnHarvesting), or for
more detail report the same output on a daily basis (see ReportGrainDaily) which is the blue line.

The additional reporting clearly shows that there was no grain yield in 1984 and further investigation (the summary file)

shows that there was no crop sown because the sowing conditions were not met. The apparent yield in the green line is
not an error in Report but is a result of the specification in combination with the possibility that there will not be a crop
every year. When Report does its work at the end of 1984 it outputs the maximum grain yield from the last sowing event
to the last harvesting event from the Wheat model - and these were the ones from 1983. This has also affected the green

line in Section 5.2.1 and all the lines in 5.2.2 but they were not so immediately obvious. The salient message is to
consider the output specifications within the context of the management conditions in the simulation.

Final and Harvested Yield

‘ \
4000 -

\ | \
2000 - '

6 Grouping

Report has the ability to produce temporally aggregated variables grouped by another variable. The example in this
section has two contrasting reports that summerise variables seaasonally in 2 different ways.

1. The first report (SeasonalOverall) temporally aggregates from start to end of simulation and has a reporting frequency
of end of simulation. It also has a 'Group By' of [Weather].Season which, at the end of the simulation, will split each
variable into values for each season resulting in multpile rows of output, one for each season (4 rows of output).
year x season output table.

2. The second report (SeasonalByYear) has multiple reporting frequencies, one for each end of season. This produces a
The group by keyword

To use the 'Group By' capability, variables need to be aggregated like this:

from [Clock].StartOfSimulation to [Clock].EndOfSimulation
The reporting frequency must be:

[Clock] .EndOfSimulation

The 'Group By' variable can be any APSIM variable e.g.

[Clock] .Today.Month
[Weather] .Season

The on keyword

This simulation also introduces the on keyword. This keyword changes the timing of variable collection. By default (as in
SeasonalByYear report), the values of variables are collected at the end of each day. When the variable is
[AGPWhiteClover].HarvestedWt this results in a lot of zeros being collected because HarvestedWt is zero every day
except when there is a harvest. This makes the mean calculation very low as it has a lot of zero values for Harvested\Wh.

In the SeasonalByYearWithOnKeyword report the on keyword is used to specify that the values for HarvestedWt should
be collected whenever there is a [SimpleGrazing].Grazed event. In other words, a value for HarvestedWt is only collected
whenever there is a harvest. Note how the mean values are much higher than the previous report.

	1 Report Model Documentation and Examples
	2 Reporting Basics
	2.1 Properties - setting up what should be reported
	2.2 Reporting frequency - setting up when reports should happen
	2.3 Event
	2.4 Dates
	2.5 Reporting at irregular intervals or specific dates

	3 Dealing with outputs that have layers
	4 Reporting at Intervals Beyond Every Day
	5 More Reporting Examples
	5.1 Perennial Crop Example
	5.1.1 Getting Annual Patterns of Herbage Accumulation
	5.1.2 Working with Soil Carbon
	5.1.3 Daily and Monthly Leaching

	5.2 Annual Crop Example
	5.2.1 Comparing Rainfall during the Crop and All Year
	5.2.2 Soil Water storage during the Cropping Phase
	5.2.3 Reporting Yield and When Things Can Seem to Go Wrong

	6 Grouping

